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A SEPARATOR THEOREM FOR NONPLANAR GRAPHS

NOGA ALON, PAUL SEYMOUR, AND ROBIN THOMAS

1. INTRODUCTION

A separation of a graph G is a pair (A4, B) of subsets of V' (G) with AUB =
V(G), such that no edge of G joins a vertex in 4 — B to a vertex in B — 4.
Its order is |AN B|. A well-known theorem of Lipton and Tarjan [2] asserts the
following. (R" denotes the set of nonnegative real numbers. If w: V(G) — R”
is a function and X C V(G), we denote > (w(v): v € X) by w(X).)

(1.1) Let G be a planar graph with n vertices, and let w: V(G) — R be a
function. Then there is a separation (A, B) of G of order < 2v/2\/n, such that
w(A - B), w(B - 4) < 3w(V(G)).

Our object is to prove an extension of (1.1) for nonplanar graphs with a
fixed excluded “minor.” A graph H is a minor of a graph G if H can be
obtained from a subgraph of G by contracting edges. By an H-minor of G we
mean a minor of G isomorphic to H . Thus, the Kuratowski-Wagner theorem
asserts that planar graphs are those without K- or K 3 ;-minors. We prove the
following:

(1.2) Let h > 1 be an integer, let G be a graph with n vertices and with no
K,-minor, and let w: V(G) — R" be a function. Then there is a separation

(4, B) of G of order < h**n'"* such that w(4 - B), w(B - A4) < 3w(V(G)).

Our thanks to N. Linial, who pointed out several years ago to the second
author that a result like (1.2) was probably true. We think that the expression
10" in (1.2) is not the best possible, and that O(hn 1 2) is the correct answer,
but have not been able to decide this. If true, this would generalize a result of
Gilbert, Hutchinson, and Tarjan [1] that every graph with n vertices and genus
g has a “separator” of order < O(g'/ Int/ 2) , because K, has genus > Q(hz).
Every 3-regular expander with n vertices is a graph with no K,-minor for
h =cn'? and with no separator of size dn, for appropriately chosen positive
constants ¢ and d ; and hence the estimate O(hnl/ 2) would be the best possible.
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We observe also that since K, contains an H-minor for every simple graph H
with £ vertices, (1.2) is equivalent to the following.

(1.3) Let h > 1 be an integer, let G be a graph with n vertices and with
no H-minor, where H is an arbitrary simple graph with h vertices, and let
w: V(G) — R" be a function. Then there is a separation (A, B) of G of order
< k0" such that w(A - B), w(B — A) < fw(V(G)).

If G is agraph and X C V(G), an X-flap is the vertex set of some compo-
nent of G\ X (the graph obtained from G by deleting X ). Let w: V(G) — R"
be a function. If X C V(G) is such that w(F) < %w(V(G)) for every X-flap
F then it is easy to find a separation (A4, B) with AN B = X such that
w(A-B), w(B-A4) < %w(V(G)). (If w(F) > %w(V(G)) for some X-flap F,
take the separation (FU X, V(G) - F). If not, let the X-flaps be F,, ..., F,
and choose j with 1 < j <k maximal such that 37, ., w(F)) < 2w(V(G));
and take the separation (HU X, V(G) — H), where H = Ulsisti .) Thus,
(1.2) is implied by the following:

(1.4) Let h > 1 be an integer, let G be a graph with n vertices and with no
K,-minor, and let w: V(G) — R" be a function. Then there exists X C V(G)

with | X| < 120" such that w(F) < Yw(V(G)) for every X-flap F .

Lipton and Tarjan [2] gave an algorithm to find a separation (4, B) as in
(1.1) in linear time. We have not been able to do as well, but we shall show the
following:

(1.5)  There is an algorithm with running time O(hl/zn'/zm), which takes as
input an integer h > 1, a graph G (where n = |V(G)| and m = |V(G)| +
|E(G)|), and a function w: V(G) — R . It outputs either
(a) a K,-minor of G, or
(b) a subset X C V(G) with |X| < h**n'? such that w(F) < Lw(V(G))
for every X-flap F .
Several algorithmic applications of this result appear in [4].

By a haven of order k in G we mean a function B which assigns to each
subset X C V(G) with |X| <k an X-flap B(X), in such a way thatif X CY
and |Y| < k then (YY) C B(X). Now if (1.4) is false, then for each X C V(G)
with |X| < h**n'/? there is a unique X-flap, say B(X), with w(B(X)) >
fw(V(G)); and B thus defined is evidently a haven of order h**n'? . Thus
(1.4) is implied by the following:

(1.6) Let h > 1 be an integer and let G be a graph with n vertices with a
haven of order 0" Then G hasa K,-minor.

While (1.6) is more compact and more general than (1.4), it seems difficult to
formulate a corresponding generalization of (1.5). We shall content ourselves,
therefore, with proving (1.5) and (1.6) separately.
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Let us mention an application of (1.6). A tree-decomposition of a graph G
is a pair (T, W), where T isatrecand W = (W,: t € V(T)) is a family of
subsets of V' (G), such that

(i) UW,: t € V(T)) = V(G), and for every e € E(G) there exists ¢ €
V(T) such that W, contains both ends of e;

(i) if ¢,,¢1,,t;, € V(T) and t, lies on the path between ¢, and ¢; then
W,nWw, cw,.

The tree-width of G is the minimum k such that there is a tree-decomposition
(T, W) of T satisfying |W,| < k+1 forall ¢t € V(T). The following is proved
in [3]:

(1.7) If k > 0 is an integer then G has a haven of order > k if and only if
the tree-width of G is at least k .

From (1.6) and (1.7) we deduce

(1.8) Let h > 1 be an integer and let G be a graph with n vertices and with
tree-width at least h>'*n"'*. Then G has a K,-minor.

2. FINDING SMALL CONNECTING TREES
We shall need the following lemma:
(2.1) Let G be a graph with n vertices, let A,, ..., A, C V(G), and let
reRY with r > 1. Then either
(1) thereis atree T in G with |V(T)| <r such that V(T)NA, # D for

i=1, , k,or
(i1) there exists Z C V(G) with |Z| < (k — 1)n/r, such that no Z-flap
intersects all of A, ..., A, .
Proof. We may assume that k > 2. Let G, ..., G be isomorphi_c copies

of G, mutually disjoint. For each v € V(G) and 1 <i < k—1,let v' be the
corresponding vertex of G'. Let J be the graph obtained from G1 U- UG

by adding, for 2< i< k-1 andall v € 4,, an edge joining v'™" and v'. Let
X = {v': veEA}and Y = {vk_lz veA}. Foreach ueV(J), let d(u) be
the number of vertices in the shortest path of J between X and u (or oo if
there is no such path). There are two cases:

Case 1. d(u) <r forsome ueY.
Let P be a path of J between X and Y with < r vertices. Let

S={veV(G): v eV(P)forsomei, 1<i<k-1}.

Then |S| < |V(P)| < r, the subgraph of G induced on S is connected, and
ISNA;| #2 for 1 <i<k. Thus (i) holds.

Case?2. d(u)>r forall uey.
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Let ¢ be the least integer with ¢t > r. For 1 < j < ¢, let Zj ={u e
V(J): d(u) = j}. Since [V(J)| = (k —1)n and Z,, ..., Z, are mutually
disjoint, one of them, say Z;, has cardinality < (k—1)n/t < (k—1)n/r. Now
every path of J between X and Y has a vertex in Z ir because d(u) > j for
all ue Y. Let

Z ={v eV(G): vier forsome i, 1 <i<k-1}.
Then |Z| < |Z)| < (k — 1)n/r, and we claim that Z satisfies (ii). Suppose
that F is a Z-flap of G which intersects all of A, ..., 4. Let a,€e FN A,
(1<i<k),andfor 1 <i<k-1 let P, be a path of G with V(P,) C F
and with ends a,, a,, . Let P' be the path of G’ corresponding to P,. Then
V(Pl) U---u V(Pk"l) includes the vertex set of a path of J between X and

Y, and yet is disjoint from Z ;A contradiction. Thus, there is no such F, and
so (ii) holds. O

We observe that the proof of (2.1) is easily converted to an algorithm with
running time O(km), which, with input G,r, and 4,,..., 4, asin (2.1)
(where m = |V(G)|+|E(G)|), computes either a tree T as in (i) or a set Z as
in (ii).

It would be desirable to replace the expression (k — 1)n/r in (ii) by some
Sf(k)n/r, where f(k)= o(k),because there would be a corresponding improve-
ment in the expression 4*/*n'/? of (1.2). We do not know if this is possible,
but we suspect not. Indeed, let G be the “cube” with vertex set

{0y ooy X0 x5 Xy, .00, x, €40, 11},
where (x,,...,x,) and (x|, ..., x}) are adjacentif |x, —x||+ - -+|x,—x)| =
1.For 1 <i<d,let
A, ={(x;, ..., x;): x, =0}, Ay =, x)) x; =1},
and let k = 2d . Then certainly every tree in G which meets all of A, A
has at least d + 1 vertices, and yet we suspect that, for any Z C V(G) with

|Z| < 241 , some Z-flap intersects all of A4, ..., 4, . If so, this would show
that (2.1) is best possible up to a constant factor.

3. PROOF OF THE THEOREM

First we prove (1.6), and then adapt the proof to yield an algorithm for (1.5).
Let G be a graph. By a covey in G we mean a set £ of (nonnull) trees of G,
mutually vertex-disjoint, such that for all distinct C,, C, € # there is an edge
of G with one end in V(C|) and the other in V(C,). Thus, if G has a covey
of cardinality 4 then it hasa K,-minor.

Proof of (1.6). Let B be a haven in G of order h**n'? . Choose X C V(G)
and a covey # with |#| < h such that

(i) XCUW(C): Ce?),

(i) |XNV(C) <h'*n'? foreach Ce#,
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(i) V(C)NnB(X) =2 foreach C € ¢, and

(iv) subject to (i), (ii), and (iil), |Z|+ |X]|+ 3|8(X)| is minimum.
(This is certainly possible; setting 7 = X = O satisfies (i), (ii), and (iii).)
Let # = {C,,..., C,}. We suppose for a contradiction that k < 4. For
1 <i<k,let A, be the set of all v € B(X) adjacent in G to a vertex of
C,. Let G' be the restriction of G to B(X). By (2.1) applied to G' with
r=h"?n"? one of the following cases holds:

Case 1. Thereisatree T of G' with |V(T)| < h'*n'/?, such that V(T)n4, #
@ for 1<i<k.let ® =FU{T} and X' = XUV(T); then € is a covey
and for each C € #’,

V(C)nB(X) SV (C)N (B(X) - V(T)) = D.
This contradicts (iv).

Case 2. There exists Z C B(X) with |Z| < (k — D|B(X)|/h'*n"? < n'/2n'/?
such that no Z-flap of G’ intersects all of A,..., A, . Let Y = XUZ.
Since k < h — 1, it follows that |Y| < h**n'? | and so B(Y) exists and
B(Y)C B(X). Since B(Y) isa Z-flapof G’ there exists i with 1 <i < k such
that B(Y)NA, = @. Extend C, toa maximal tree C; of G disjoint from B(Y)
and from each C, (j#i). Let Z'=V(C)NZ,let X' =Z'U(X - V(C),
andlet W =V(C)U(V(G) - B(X)).

We claim that S(X')N W = @. For suppose not. Since B(Y) C B(X",
there is a path of G between W and B(Y) contained within 8(X’) and hence
disjoint from X' . Since WNB(Y) = &, there are two consecutive vertices u, v
of this path with u e W and v € V(G)—- W C B(X). Since u, v are adjacent
it follows that u € X U B(X), and so

ue (XUBX)nW -X")cv(c).

Since v ¢ W it follows from the maximality of C, that v € B(Y). Since
ué¢ p(Y) we deduce that u€ Y, and so

ueYn(V(C)-X)cv(C,.

But then v € 4., which is impossible since 4, N B(Y) = &. This proves our
claim that (X')NW = @. Hence, f(X') C B(X). Let €' = (£ —{C,})U{C}};
then ' is a covey. We observe that
(i) X' cUW(C): Ce¥€');for Z' CV(C)),
(ii) |X' nV(C)| < h'*n'* for each C € #'; for if C # C| then X'n
V(C)=XNnV(C),and X'nV(C))=Z', and
(iii) V(C)NB(X') = foreach C =F"; for B(X')NW =@, as we have
seen.
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By (iv),
1Z'| + X'+ 31B(X))| > |Z| + | X| + 3| B(X)).

But |%'| = %] and X'UB(X') C (XUB(X))—(XNV(C,)),andso XNV (C,) =
@. Then & — {C,;}, X satisfy (i), (ii), and (iii), contrary to (iv).

In both cases, therefore, we have obtained a contradiction. Thus our as-
sumption that k < h was incorrect, and so k = h and G has a K,-minor, as
required. O

Now let us convert the proof of (1.6) to an algorithm for (1.5). The main
difference will be that we shall keep the sets X N V(C) as large as possible, to
improve the running time. Let 4, G, w be the input, and let r = th/ 2pl 2_|.
Set X, =%, =@ and B, = V(G), and begin the first iteration. In general, at
the beginning of the rth iteration, we have a subset X, | C V(G), a covey %,_,
with |£]_|| < h, and a subset B,_, C V(G) which is a union of X,_,-flaps,
such that .

i) X,_, CUW(C): Ce?_)),
(ii) lX ,NV(C)=r foreach Ce&_,,
(iii) V(C)nB,_, =@ foreach Ce%_,,
(iv) w(F) < 3w(V(G)) for each X,  -flap F with F Z B, .
(1) Let |%,_,| = k. If k =h we have found a K,-minor; we output (a) and
stop. Otherwise we go to step (2).
(2) We compute all the X,_,-flaps included in B,_, .

If w(F) < Jw(V(G))
for every such X,_,-flap F, we output (b) (with X = X,_, ) and stop. Other-

wise, let F be the unique X,_,-flap with w(F) > Lw(V(G)). If |F| < h'n'?
we output (b) (with X = X,_, UF ) and stop. Otherwise we go to step (3).
(3) Let g,_, = {C,,...,C,}. For 1 < i <k, let A, be the set of all
v € F with a neighbor in V(C;). If 4, = & for some i, we set X, =
X_,-V(C), € =%_,-{C}, B,=F, and return to step (1) for the next
iteration. Otherwise we go to step (4).

(4) Let G' be the restriction of G to F. We apply (2.1) to G' and

A, ..., A, . We obtain either:
(i) atree T of G' with |V(T)| <r such that V(T)N A, # @ for each i,
or
(ii) asubset Z C V(G') with |Z| < (k — 1)n/r < r such that no Z-flap of
G’ intersects allof 4, ..., 4, .

In the first case we go to step (5), and in the second to step (6).

(5) Given T asin (4)(i), we enlarge T to atree T" of G with |V(T")| =r
(this is possible since |F|>r). Weset X, =X,_, UV(T ", & =%_,U (1T},
B =F -~ V(T'), and return to step (1) for the next iteration.

(6) Given Z as in (4)(ii), let Y = X, U Z. If w(D) < fw(V (D)) for
every Y-flap D of G, we output (b) (with X = Y ) and stop. Otherwise, let
D be the unique Y-flap with w(D) > Jw(V(G)). Now D isa Z-flap of G',



A SEPARATOR THEOREM FOR NONPLANAR GRAPHS 807

and so we may choose i with 1 < i<k suchthat DNA4, =J. Extend C; to
a maximal tree C; of G disjoint from D and from each Cj (j # i). Since
A,NB(Y)=0, it follows that 4, C V(C;). Let

X'=(V(CHNZ)U(X,_, - V(C));

then, as in the proof of (1.6), it follows that
F'n(VchoJw(C) 1<k, j#0) =2

for any X'-flap F' of G with w(F') > Jw(V(G)). Extend C; to a maximal
tree T of G disjoint from each C; (j # i) and with [V(T)N(ZUD)|<r.
Since @ # A4, C V(C;) and |F| > r, it follows that |V (T)N F| > r, and so we
may choose Z' with |Z'| = r such that

V(T)n(ZuD)CZ' CV(T)NF.

Weset X, = (X,_, - V(C)HUZ', €= (%_, —{CHu{T}, B,=D-Z',
and return to (1) for the next iteration. (We observe that any X,-flap F " of
G with w(F') > %w(V(G)) is a subset of an X'-flap with the same property,
since X' C X ,» and hence is disjoint from each member of %, and is a subset
of B,.)

This completes the description of the algorithm (apart from the simple data
structures used, which we omit) and the proof of correctness. To analyze the
running time, we observe that the most time-consuming part of each itera-
tion is step (4), which takes time < O(hm). Since |X;| + 2|B,| = 2n and in
each iteration the quantity |X,| + 2|B,| is reduced by at least r, there are at
most 2n/r < O(h_'/ 2112 ) iterations, and so the total running time is at most
O(h'/zn'/zm) , as claimed.

It may be that by using more sophisticated, dynamic data structures, the
algorithm can be implemented more efficiently, but at the moment we do not
see how to do so.

REFERENCES

1. J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, 4 separation theorem for graphs of bounded
genus, J. Algorithms 5 (1984), 391-407.

2. R.J. Lipton and R. E. Tarjan, 4 separator theorem for planar graphs, SIAM J. Appl. Math.
36 (1979), 177-189.

3. P. D. Seymour and R. Thomas, Graph searching, and a minimax theorem for tree-width, J.
Combin. Theory, Ser. B (to appear).

4. N. Alon, P. D. Seymour, and R. Thomas, 4 separator theorem for graphs with an excluded
minor and its applications (Proc. 22nd STOC, Baltimore, Maryland, 1990), ACM Press,
293-299.



808 NOGA ALON, PAUL SEYMOUR, AND ROBIN THOMAS

ABSTRACT. Let G be an n-vertex graph with no minor isomorphic to an A-
vertex complete graph. We prove that the vertices of G can be partitioned
into three sets 4, B, C such that no edge joins a vertex in 4 with a vertex in
B, neither 4 nor B contains more than 2n/3 vertices, and C contains no
more than #%?n'/? vertices. This extends a theorem of Lipton and Tarjan for
planar graphs. We exhibit an algorithm which finds such a partition (4, B, C)
in time O(h'*n'?m) ., where m = |V(G)| + |E(G)| .
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